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Témperature distributions are determined analytically for fully

developed laminar heat transfer in chennels with aspect ratios from 1
The channel walls sre uniformly heated, but the heat flux on the
short sides i1s an arbitrary fraction between 0 and 1 of the heat flux on
the broad sides. TFor all cases, the wall temperatures are compared on
the basis that the total heat transferred per unit channel length is
maintained at a fixed value. The poor convection due to the low veloc-
ities in the corners énd along the narrow walls always caused the peak
temperatures to occur at the corners, The lowest peak‘temperatures were
found when all the heating took place at only the broad walls rather than
when heating was partly distributed to the short sides. This results from
the fact that, wvhen four sides are heated, more energy is being supplied
to the low velocity corner regions. For heating at only the broad walls,
the corner temperature decreases rapidly as the aspect ratio is increased
to about 10 and insignificantly thereafter. 1In the limit of infinite as-
rect ratio, the wall temperature distribution does not approach a constant
as 1s the case for iufinite parallel plates. }{7 T HO
NOMENCLATURE

a,b half lengths of short and broad sides, respectively
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Q heat addition per unit channel length

q heat addition per unit wall area

T temperature

u fluid velocity

T mean fluid velocity

X dimensionless coordinate, x/a

X coordinate measured along short side from channel center
Y dimensionless coordinate, y/b

v coordinate measured along long side from channel center

B heat flux ratio, qs/qB

Y aspect ratio, b/a

9 dimensionless temperature, 4kTﬁQ
Subscripts:

B refers to Broad'side

b bulk mean value

05]

refers to short side
W value at wall
INTRODUCTION

Rectangular coolant channels are often employed in heat-exchange de-
vices, particularly in nuclear reactor plate-type fuel assemblies where
wide, parallel fuel-bearing plates are supported by unfueled side plates.
In such assemblies, most of the total heating is produced in the broad,
rfueled pletes with the remainder (usually less than 10 percent) resulting
from gamma heating in the support walls. For example, in [1] 3 percent

of the total heating is generated in the support walls. Cooling is




accomplished by passing high velocity fluid through the channels. A
factor of importance for proper operation of the reactor is maintaining
a satisfactory temperature distribution in the cooling channel walls.

Several papers have treated laminar fully developed heat transfer
in rectangular channels. In [2] the problem is examined where both uni-
form and nonuniform heating take place on a large fraction of only the
broad walls. As part of the solution in [2], the case of uniform heat-‘
ing over the entire broad walls (with the side walls unheated) was solved
numerically for channels having aspect ratios of 10 and 20. In [3],
variational methods were described for channel heat-transfer problems,
and results were evaluated for aspect ratios of 1 and 10 for uniform heat
flux on all four sides, and for an aspect ratio of 10 with uniform heat-
ing on the broad sides only. An analytical solution was obtained in [ 4]
for uniform heating on four sides, and results were evaluated for aspect
ratios of 1, 2, and 4.

It is the purpose of this note to provide the general solution where
heating occurs on all four walls for the conditions that the uniform heat
flux on the short walls is any prescribed fraction between O and 1 of the
flux on the broad walls. The total heat input per unit channel length is
maintained constant, and aspect ratios from 1 to «» are considered.

ANALYSTS

The rectangular channel and its coordinate system are shown in
Fig. 1. Only the Tully developed velocity and temperature regions are
considered, and the fluid is assumed to have constant properties.

Velocity distribution. - For steady laminar flow, the velocity




distribution u, as given in [5], was integrated over the cross section
and the result divided by the cross-sectional area to give the mean ve-

L

locity U. This was used to nondimensionalize u:
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v 1is the aspect ratio b/a, X = x/a, and Y = y/b.

Energy'equation. - The energy equation for the fluid temperature T,

with viscous dissipation neglected, is

oT 2T 21 | dEr
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where p, cp, and k are the fluid density, specific heat, and thermal
conductivity, respectively. Under the assumptions of constant heat addi-
tion per unit channel length, Q, and a fully developed temperature pro-
file, a heat balance on a unit of channel length provides the result:
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Egquation (2) now becomes
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From symmetry, only the first quadrant need be considered, and the bound-

ary conditions are
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where B = qS/qB, a parameter in the problem, in which ag and dg are,
respectively, the heat fluxes at the broad and short walls. The energy
Bg. (3) is to be solved subject.to the boundary conditions (4) using the
velocity distribution (1).

Superposition of solutions. - Equation (3) is written in terms of

the dimensionless temperature 6 = 4kT/Q:
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This is a nonhomogenecus second order partial differential equation, and
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the difficulty of solution is caused by the complexity of the u/ﬁ term,
By superposition, the solution is expressed as the sum of a particular so-

lution Gp, which satisfies the Poisson equation:

c

Fop = = = (58)
and a complementary solution 6o, which satisfies the Laplace equation:
F6e = 0 (5b)
A particular solution can be adapted from the one given in [4] =nd is

written in the dimensionless form:
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where G was given after Eq. (1) and €* = 1/2[y + g].
The complementary solution is divided into two parts Oo = 01 + 0o

having the boundary condition
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In addition to satisfying these boundary conditions, it is a restriction
of the Neumann problem féf Laplace's equatioﬁ'that the line integral of
Tthe normal derivatives around the boundary be zero, a condition that was
used to cvaluate C* from either Egs. (7) or Egs. (8). Tt is the neces-

sity of satisfying these line integral conditions that required the 6%

fimetiomn +a he
runction To pe

The solutions for 67 and 0p were found by using product solutions

in conjunction with Fourier series expansions of the boundary conditions.



The final dimensionless forms are:
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The analytical forms of Ql and 9o automatically satisfy the zero
derivative conditions in Egs. (7) and (8). The Fourier coefficients A,
and B, were evaluated to satisfy the finite derivative conditions

061(a,y)/ox and 905(x,b) /dy, respectively. It is significant to note

* %
that the constant terms, = - € and I, ZC L2 ; in these
b + aB a b . al
' —+a

boundary conditions do not make a contribution to the A, and B,, as
they are multiplied by cos{nxY) and cos(nnX), respectively, snd are

integrated from O to 1 resulting in zero values. Hence, the 61 and g



solutions depend only on the Qﬁ part of the particular solution, and
along vith 6., are independent of p. As a result, it is the B factor
in the 6% function that alone accounts for the unequal heat fluxes on
adjacent sides.

Bulk temperature. - The solution 0 = 6, + 6 + 61 + O 1is sub-

stituted into the definition for the bulk temperature:
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u
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The integrations are carried out,‘and after considerable algebraic menip-

ulation the bulk temperature is given Dby
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The final solution is then given as 6 - @, = 8, + 6% + 61 + 63 - 6, in
which v and B are the only parameters,
LIMITING CASE OF INFINITE ASPECT RATIO
The solution was examined for the case where Y - o resulting in

the following limiting analytical expression for the wall temperature

distribution:
o0
6(1,Y) - 6y = (2.@%5_:_2> Z r_i.LS- + % Y2 -% (13)
n=1,3%,5, . .
6(X,1) - 6y = ﬁ + == Z — (14)
_l 3590, « .

where (13) and (14) agree at the corner X =1, Y =1, and

2]

z :1 31
el (1.03693)

n=1,3,5, « + «
in which the last number is the Riemann zeta function of argument 5.
DISCUSSION
Wall temperature distributions were evaluated from the analytical
solutions and are presented in Figs. 2 to 4. At some places along the

Ty - Tp
wall, the value of —%7ZE—— is negative, which means that T, 1is larger

than T,. This may seem to contradict the fact that heat is flowing from
the wall to the fluid. However, it must be recalled that Ty 1is an
sverage valué'over the entire cross section, while T, 1is a local value
along the wall,

Because ol the comnlexity of the equations, the influence of the
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aspect ratio 7y and the heating ratio parameter B are not readily ex-
plained directly from the analytical form of the solution. For this
reason, an attempt is made to present physically plausible explanations
for some of the trends in the graphical results. The local temperature
differences T, - Ty depend only on the quantities k, Q, B, and 7,

and the physical significance of the B parameter should be kept in

mind when interpreting the figures. When B = O, there is no heat being
transferred from the short sides, so all the @ is wniformly transferred
from the broad walls only. For a fixed aspect ratio, as B 1is raised,
an increasing portion of the Q is transferred from the short sides with
a corresponding decrease in the total heat leaving the broad sides. When
B =1, all portions of the periphery have the same local heat flux.

Fig. 2 provides results, for various aspect ratios, for the important
cases where either only two walls or all four walls are uniformly heated.
Consider first the set of solid lines for B = 0, vhere all of the Q 1is
being dissipated from only the broad walls. It i1s convenient to consider
a set of channels having the same width 2b, the same total Q, and with
the aspect ratio being increased by diminishing the spacing 2a. Under
these conditions, the heat flux on the broad sides will remain constant.
In a square duct, ¥ = 1, the heat flow paths from the two heated walls
toward the region of high velocity fluid are approximately equal for all
positions on the heated side, and hence, the temperature along these walls

is almost uniform. As ¥ s increased (by decreasing the spacing, 2a)

paths for heat flowing to the region of higher velocities are shortened.
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These paths are roughly perpendicular to the broad walls everywhere ex-
cept for heat flowing from the corner regions. Because of the low ve-
locities near the side walls when 7y 1s large, some of the corner energy
must be conducted within the fluid through a longer path in a direction
parallel to the broad sides to reach a higher velocity region where it
can be carried away more easily. Although the region of low velocity
fluid occupies proportionately less of the cross-sectional area as T
increases, the width of the heat conduction path in the direction paral-
lel to the heated side is also decreased as the duct becomes more narrow.
As a result, when Y — «, the temperature distribution along the heated
wall goes to a limit with a maximum in the corner (Egs. (13) and (14))
rather than to a uniform temperature, as is the case for a duct of infi-
nite parallel plates without bounding side walls. The recason is that
there must always be a spanwise temperature gradient to transport the
imposed heating away from the low velocity region of the corners and side
walls,

Now consider the set of dotted curves for B =1 in Fig. 2. In
this instance there is uniform heating all around the duct periphery,
and the corner regions receive heat from two sides rather than from one,
as was the case for B = C. The interesting consequence is that the pesk
temperature remains essentially constant as ¥ 1s increased. However,
the temperature gradients along the broad sides again increase with v
to remove the heat from the corner and side wall regions.,

In Pig. % is shown the effect of changing 3 Dbetween O and 1 for

two extremes in aspect ralio, ¥y = 1 and 20. As [ 1is increased,



the shifting of heat to the wall, which had been unheated for g = O,
tends to increase its temperature, while the temperature of the wall,
which had received all the hcat when B = O, tends to decrease. TFor a
square duct, v =1 (dotted lines), the corner temperatures remain fixed.

In this case, although changing B shifts heat from one side to the
other, the heating received by the corner region remains constant, be-
cause the heat that is removed from one wall that forms the corner is
added through the other. Now consider the results for Y =20 in Fig. 3
(solid lines). As 3 goes from O to 1, it is necessary to remove only a
small amount of the total § from the broad walls and shift it to the
short walls to provide the same uniform heat flux at the short wall. The
low velocity region then receives a little less heat from the broad walls,
but this decrease is much less than the additional heat it receives from
the short walls. The result is an increase of both the spanwise tempera-
ture gradient and the corner temperature as f is increased, a result
which was found to hold true for all rectangular ducts (y > 1), Thus,

these results lead to the important conclusion that it is better to

transfer all the heat through the broad walls of rectangular chennels than
to distribute i1t around the entire periphery (under the restrictions that
the walls are nonconducting and that the heating extends all the way into
the corners).

The corner temperatures are of practical importance because that
is where the meximum wall temperatures occur for all aspect ratios and
values of B. In Fig. 4 are shown the peak temperatures as a function

of the aspect ratio for variocous B values. The largest reduction in the
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corner temperatures of rectangular channels is achieved when all the
heat is transferred through the broad walls only (B = 0) and when the
aspect ratio is increased to about 10, Beyond 71 = 10, only a small re-
duction occurs, so that for rectangular cooling channels in nuclear re-
actors, where B = 0.03, the optimum aspect ratio appears to be about
10 to 20. If the side wall heating is increased (B > 0), the corner
temperatures do not drop off as rapidly with larger y as for the case
where B = 0. When the heat flux is very nearly uniform over all walls
{0.75 < B < 1), the pesk temperatures are almost consbant for all aspect
ratios. Hence, it is concluded that for many nuclear reactors that
utilize rectangular channels, it would be a disadvantage to load the
narrow side walls with fuel even if it were possible. The advantage
gained by the increased heat-transfer area would be offset by the addi-
tional heating imposed near the corner resulting in higher corner tempera-
tures and higher maximum to minimum wall temperature differences.
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DIMENSIONLESS WALL TEMP, (7 - 7p)/ (@/4k)
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